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LAMINAR SLIP fLOW IN A FLAT DUCT OR A ROUND
TUBE WITH UNIFORM WALL HEAT TRANSFER
by Robert M. Irman
Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT NoG—! 7390

An anslysis was made to determine the effects of low-density phe-
nomena on the heat-transfer characteristics for legminar flow in a
parallel-plate chennel (flat duect) or in a circular tube with uniform
wall heat flux. Consideration was given to the slip-flow regime,
wherein the major rarefaction effects are displeyed as velocity and
temperature jJumpe et the condult wells. The results obtalned apply
along the entire length of the conduit, that 1s, in the thermal entrance
regibn as well as far downstresm. The solutions contaln a series ex-
pansion, and analytical expressions for the complete set of eigenvalues
and eigenconstants for this problem are presented. The results give
the wall temperatures, Nusselt numbers, and thermel entrance lengths for
the conduites for various values of the rarefaction parameters. )

NOMENCLATURE /k/,m’b

a . accommodation coefficient
Cn coefficient in series for temperature distribution in parallel-

plate channel

Cn coefficient in series for temperature distribution in circular
tube
Cp specific heat at constant pressure

ST




£(q)
£(w)

a(n)

coefficlent defined by equetion (32)

coefficlent defined by equation (57)

thermal diemeter, 8L/c

tube dlameter, 2r0

constant defined in equation (31)

dimensionless velocity for parallel-plate channel, u(n)/d

dimensionless velocity for circular tube, u(w)/®

transverse temperature distribution in fully developed reglon
for parallel-plate channel

specular reflectlon coefficlent

transverse temperature distribution in fully developed region
for circular tube

heat-transfer coefficlent, q/(ty = tp)

value of definite integral, equation (34) for parallel-plate
channel, equation (59) for round tube

Bessel function of first kind and first order

half distance between plates

mean free path

constant defined by equation (60)

constant defined by equation (61)

Nusselt mmber, hDy/k or hd/«

Prandtl number, uCp/ K

static pressure

rate of heat flux per unit area from well to fluld

transverge or radial distribution function
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o+ d'o"i

b4

e

Reynolds nunber, 20%L/u for parallel-plate chammel, pWi/u

for elreular tube

gas constant

eigenfunctiens of equation (14) for parallel-plate channel

eigenfunetions of equatiem (43) far eireulsr tube
radiel ecordinate

tube radius

temperature

ges temperature adjacent to wall

veloelty

exial eoerdinate

transverse coordinate

Greek symbols:

o

Pm

vy =

LR G

.

dimensionless velocity slip coeffielent, gu/ZL or gu/d

7‘1?/211

7%/ 1

retio of specifiec heats

dimensionless coordinste, x/2L or x/r,
dimensienless eocordinste, oy/2L

gas thermal econductivity

separstion constant

eigenvelues of equation (14) for parallel-plate channel

elgenvelnes of equetion (43) for round tube
absolute viseosity
temperature~Jump coefficient

veloelty-slip coeffiecient



P ges denmlty

o syrmmetry mumber

¢ rarefaction parameter, i -\/'ﬁzﬁﬁ’pL or B - /Rgt/pd

¥ dimensionless quantity, RePr/o® for parsllel-plate channel,

RePr/4 feor ciremlar tube

® dimensionless eoordinste, r/r,
Subseripts:

) bulk condlitliem of gms

a fully developed reglon

d,e fully developed region for comtimmum flow
e entrance region

1 gas entering chammel, x = 0

8 slip eondition at wall

W wall

0 heated sectlien entranee, x = 0

Superseript:
= .a.vera.ge value
TINTRODUCTION

In reeent yearse, consldersble interest has developed in the study
of the flutd~flow and heat-transfer characteristics of rarefled gases,
This interest has been stimilated by the Iineressing frequeney of low-demsity-
environment applications and the advent of space flight, Only very re-
cently has attention been directed to the problem of heat transfer te
rarefied gas flow In comduilts,

Of particular Imterest in internal, rarefied gms~flow studles has ‘been.

the preblem of laminar forced~conveection heat transfer in conduits under



glip-flow eonditions (1 end 2]« The essential simplifiestions Iintredused
in these Investigations to obtain annlytieal seolutioms are fully estab~
1lished temperature prefiles and fully developed veloelty distributions.

The present Investigation is concerned with the more general preblem
of determining the heat«trensfer echeracteristies along the entire length
of the eondwit, that 1s, Iin the thermel entrmnee region as well as far
dovnstream, for laminar slip flow in a parallel-plate channel [often re-
ferred to as & "flat duet”) or in a circular tube with mniferm wall heat
flux,

In the sectlion FLOW TN PARATLEI~FIATE CHANNEL 18 consldered the prob-
lem of slip flow of a rarefMed gas In a perellel-plate ehannel with uni~
form wall heat flux st ene or at beth wells., Both heating arrengements
are frequently encountered in practiecal spplicetions, The problem ¢f slip
flow in 8 elreular tvbe with mniform well heat flux 1s diseussed In the
gection FLOW IN CIRCULAR TUBE,

FLOW IN PARALLFI~PLATE CHANNEL

The esordinete systems for the problems wnder study sre shown in
Fige 1.+ A slightly rarefied ges flows in the positive x-direction with
a fully esteblished velocity prefile. Up to & point (x = 0) the ehanmel
wells and gas are isothermal &t temperature +,. After this point & uni-
feorm wall heat flux is applied, It 18 desired to determine the tempera~
ture distribution end the veristion In the heat-transfer ceefficient mlemg
the enti‘re length of the channel,

It 18 convenlent to place the plane y = O at the plane of symmetry,
thet 18, at the middle of the duet in the ease of heating of both walls at



Yy = L (Fige 1(a)) and at the Iinsilated wall in the cmse of hesting from
cte side at y = +2L (Figs 1(b))s Both cases are ineluded in the follew
ing development by defining a symmetry nwmber ¢, whieh is alse the
mmber of heating surfaces [3].

Before the emergy equation e¢mn be solved, the gas velocity distri-
bution must be kmown, This distribution was investigated in [4], The
wee of the results lemds to the dimemsionless velaeity profiles u(n)/X
as

£(n) = (3/2)(1 = 72 + 4) /(1 + &) g =2 (1)

£(n) = 6(n = 2 + @) /(1 + 6x) =1 (2)
where o =§ /2L, The slip eeefficlent &, 1= glven by the expressiem
[5]

by = [(2 - 8)/&]1 (3)
where | 1s the mean free path and g 1s the specuwlar reflectiem co-
effielenty The relatien between the average veloelty and the slip ve~
locity is emsily obtalned as

1,/¥ = 6a/(1 + 6a) o= 1,2 (4)

The starting point of the heat~-transfer enelywis i1s the differential
equation for econveectlive heat tremsfer In the paerallel~plate chammel flew
with fully esteblished veloclty profiles With the gas properties
agsumed eonstant, the heat eonduction in the flow direetion compared
with that in the transverse y-direction sssumed negligible, snd the
viseous dissipatien assumed negligibley the equation esn be written In
the form

pCu(3t/ax) = k(3% /%) (5)




Equatien (5)y writben in terms of dimensienless varisbles, becemes
vE(n) (3/3) = (324/0n2) (8)
The bemndary conditions are asg fai‘!.mx
Uniform wall heat fluxs
3t/ = (2L/6) (a/k) &% =1, L2 0
Symmetrys
otfor =0 at 7 =0
Speelfiad emtrance temperminres
t=% st (=0
When the wall heat flux Is wmiform, 1t im knewn that fer very large
velnes of x there 18 2 fully developed thermal situstien charancterized
by a linear rime in the temperature et all pedints In the cross sectien
elang the chamely that 1s,

(3ty/0x) = (oq/RePr«) g = 2,1 (1)
Equation (7) ean be written alternatively as
(tg - t4)/(21/0) (g /k) = o%(x/2L) [RePr + G(n) (8)

The fumetion G(n) for each value of o Is
G(n) = [(3/4)n% = (1/8)n* = (39/280)] + [=(1/4)n? + (1/8)n*

- (13/280) 1(u, /&) + [2/105](u,/&)Z e=2 (9m)
a(n) = [7° = (1/2)n% = (9/70)1 + [(1/2)n* = 1B + (1/2)7?

- (3/70)I(w,/E) + [1/210](w,/86)2 g=1 (o)
The details of the mnalysis fer G(n) are eadtted in the present study
bt may be feund in [4]s The first quantity in brackets en the right side
of (9a) mmd (9b) represents the uwsusl transverse tempersture dlstributien
for centinmm flew conditiems, while the seesnd and third quantitles In
brackets are cormeeted with one effect of gas rmrefmetion, nemmely, that
of veloelty jump.



Determining the seluticn in the endran®e reglon Im convenlent 1f
& ddfferente tempereture 'be 1n defined as

tg(tym) = £(Lym) = £4(Eym) (10)
Them ., mmst satisfy the relatiom
Y£(n) (3t/0L) = %4, fOn7 (11)
with bewndary conditioms
Ot Pn =0 8t 7 =0 =and 7=1 (12)

The selutien of (11) that will satisfy (12) s=n be found by using
8 produet selutien that leads to & separntion of variebles, This solu~
+ien wvill heve the form

to/(E/e)(a/0) = T Gy meblg(x/mfre] (13

where A, awi R; are, respectively, the elgexvalues snd eligemn-
. fimetions of the Sturm-Liouville preblem:
(a%R/anZ) + M(n)R = 0 .
o= 2,1 (14)
dRfdn =0 &t 1 =0 and 0 =1 T
The coeffielents C; in (13) sre determined so as teo satisfy the
bomndary conditien et the entrence to the heated sectien ¢ = O2

$,(0yn) /(2L/8) (a/k) = ~G(n) = n};i ¢, R, (1) (15)

This result together with the orthegomaiity wroperty of the elgemfwnetiens
lends to

1 1
Cy = k\/o\ G(n)f(n)Rm(ﬂ)dﬂ/[ £(n)R3(n)dn

1
= J; G(n)E(n)Ry(n)dn / [R(7)3%R/on ol R ¢ = 2,1
(18)



The integral in (16) cmn be evalunted by substitubing G(n) from (9a) or
(9b) smd £(n) frem (1) ar (2), imtegrating by parts, and whilizing (14)e
The final result 1s l1demtieanl for both emses:

Cp = 1/(A 3°R/dn OA) R o= 2,1 (17)

(" . 'The eémplete selubion for the temperature that applies in beth the
entrance snd the fully develeped reglons 1s fuund by adding the solwbioms
for t; and ..

A resull of yoractlical Interest is the lemgitudinal varietion of well
temperature tw emesmdingtcamfmwﬂim flux, Befyre the
well tempereture variation can be determined, however, it 1s necessary
to eonsider ancther effect of gas rarefmetion that enters through the
therml bowndary eondition et the wall, whieh permits & Jump bebtween the
surfeee tempersture &, and the adjacent gas tempersture t [5]1

g = b = 4o (12)
where £, represents s tempermiure~Jump coeffliclent related to cther
proyerties of the system by

gy, = [(2 - &) /aller/(r + 1)1(1/Pr) (19)
For wniferm well hest fimx,
(/) g, f = [(Bta/O0) + (346/o0) Ly g = (a/6)
so that the temperatnure Jump at the wall ean be written
by -t = ~(2L/w) (a/k) [o(8, /2L) ] (20)

Combining (8) smd (13) In aceerdsnce with (10), setting n = 1, and
then eonbining the result with (20) yleld
(& = t4)/(2L/0) (a/k) = o?(x/21)/RePr + (1) -

+ ok, /2n) +‘; ¢ R (Lexpl-o?\ (x/2L) ReBr]  (71)
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For & uniferm well heat fluwx, the bulk temgersture t,(x) is given by
by = tq + 02[(2L/0) (a/K) (x/2L) /RePr] (22)
Combining (21) and (22) ylelds
(%, = ty)/(2L/e) (a/k) = G(1) + o(§y/2L)

+ 2 CRey( 1) exp[~0”N\ (x/2L) /RePr] (23)
it
Then, for the fully developed situation (x -+ ),

(ty - %) d/(zb/v)(q//c) = 6(1) + a(t,/2L) (24)

Dividing (23) by (24) ylelds the important retie
(b - 8) /(% - &) = {}(1) + o(&y /2L)

+ mi;i CmRm(l)exp[-az'AE(x/ZL)/RePr]}/[G(l) + o(8y/21) ] (25)

Equatien (25) esn be eveluated amce mmerieal values of A\, R (1), and

Cp have been obtained for given valnes of o or u,/f.
The Nusselt nimber mey be determined frem the definitien of = thermml

dlemeter Dy, which deperds on the area of the heating surface [3], Far
the present anmlysis, Dy = 8L/c. Then, when this definition is applied,

When (23) 1s used,

Nu = 4 /{G(l) + c(gt/ZL) + i cmP&n(l)exp[—ozxm(x/ZL) /RePr]} (28)
m=l

It 1s of interest to examine the behavior of the Nusselt number
at the entrance of the heated section (x = O) and also in the fully

developed r&ion (x + o), At the entrance,



11

Tuy = 4 [G(l) + o(&,/2L) + il Cum(l)]
M=

From (15), however, setting 7 = 1 ylelds
6(1) == Y Cafm(1)
m=1
so that
Nuy = 4/0(&/2L) o =21 (27)

In the absence of a temperasture-Jump effect, the local Nusselt number
starts with Nuy =+ s With a tempersture jwup, however, the loeal Nusselt
murber commences with a finite value given by (27). The effect of the
mmber of heeting surfaces enters through the symmetry mmber o.
When (26) 1s used, the fully developed Nusselt mmber 1s deter-
mined as
Noy = 4/[6(1) + o(g/21)] 0= 21 (28)

The fully developed Nusselt number becomes for each case
Fug = (140/17)H[1 ~ (6/17)(ug/®)

+ (2/51) (ug/®)? + (70/17) (&,/21)] =2  (29a)
Nug = (140/13)/[1 = (3/26) (ug/8)

+ (1/78) (w/®)% + (35/13) (& /2L) o=1 (29D)
In the absence of rarefaction effects, the fully developed Nusselt number
Muig,e hes the value 140/17 = 8,23 (0 = 2) or 140/13 = 10,77 (0 = 1)a
From (29a) or (29b), 1t 1s clear that the effects of velocity Jump (uwg # O)
would tend to increase the Nusselt nuiber, while the tempersture jump
would act to decrease the Nusselt number, Similar results have been cb=
served in the case of circular-tube slip flew [1,2].

Nwmmerieal velues of the entrance Nusselt mmber (27) heve been
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evalusted es functions ef the paremeter p~/Rgt/2pl. and relsted to the
mean free path 1 by the relstien [5].u~/Rt/2pL = «/2/x (1/2L)s The
values ere pletted in Fig., 2, The velues for 1 and Prandtl mmber ore
representative of air and most diatomie games, Fully developed Nusmelt
mmbers as given by (29) have been evalusted as & fumction of the param-
eter u~/R;t/2pL exd sre plotted in Fig, 3 for Y = li4, Pr = 0,75,
g8 =1 end & = 1.0 and O.4 in the form of the ratie Wuy/Nuy .
where md,e is the appropriste fully developed contimnm vyslue, The
effect of gas rarefaction is slways to decresse the value of the Nuamelt
mmber below its comtlimmmm value, the result being mere pronounced for
two~gided heating than fer cne~sided heating,
The dimensicnless well-to-bulk temperature difference
(ty = tp)/(ty = tp)ys (25), ond the local Fusselt muber Nu, (26), ean
be evalusted aleng the entire duct length as soon as the eigenvalues
Npr elgenfmmetions Ry (n), and serles coefficlemts e, have been deter-
mined. The function Ry(7) is the solution of (14):
(a%R/dn?) + N(n)R = O
o= 2,1 (30a)
dR/dn =0 at N =0 and N =1
The normelization convention
R(0) = 1 (30b)
is alse used,
Agymptetic expressions for the eigenvalues A, and constants e
end Ry(l) for beth the case o = 2 and the eage o = 1 are derived in

[4] and the results are presented as fellows:

Ay tam By = [_;/Z'& + (1 + m)nm"l(:l,/mﬂ/zﬁ:(m)?’/z =E, (31)
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D,; = R, (1) = ~8w/|:Ec + 1+ (BE/EU):I (32)
vhare

=V T (53

Iy = [lm)'an-m |:-‘/_4;+ (1+4¢.)ﬂin"‘1(l/-‘[l+4m)]/-\/1+6¢.
(34)
end E, for & glven value of a, 1s a constemt, Fgwation (31) indiemtes
that E; = 2By, Tabulated values of the first five reots of (31) for =
nmmber of velues of E; are given in [6]. The values of I, for any
given slip velocity retio uy/W are shown in Fig, 4.

The first four eigenveliies and coefficients are shown in tsble I(a)
for symnetriesl two-slded heating (o = 2) or in table I(b) for unsym-
metricel one-sided heating (o = 1), The results for continumm flow were
obtained frem expressions presented in [3], while for slug flow, the

1/2

elgenvalunes were obtained as the poaitive roots of sin 7‘m =0 or

7\;5/ 2 . mx. The coefficients D, were obtained from the equally simple

result Dy = ~2/Npe

The numerical value of 1/3 for us/ii corresponds to Lu/ZL = 0,0833,

B 0 I | e

— ] - ", 3 _
w. L

value of 3/5 for uy/@ corresponds to &,/2L = 0.25. The results

o

for uge/W = 1 (slug flow) are outside the slip regime but haeve been in~-
cluded as limiting vaelues and for comparison.

The level of accurmcy of the foregoing results waes checked [4] by
computing the elgenvelues and eigenfunctions of (30a), s well as the
coefficients Cp given by (16), on an electronie (IBM 7094) computer,
by the Runge-thtta method, for us/ﬁ' = l/ 3 and 3/ 5« The elgenvalues and

coefficients Bo obtained are listed in teble I. The relevant quentities



14

a8 computed from the previously presented snelytical expressions sre in
remarkebly close sgreement with the electronieally computed velues, es-
pecially for values of m = 2. It is concluded that the esymptotie
formmlas are sultable fer m > 2.

The varistion of the dimensionless wall-to~bulk tempersture difference
along the ducts can be evalusted with the numerieal information given in
table I, Before proceeding with the evaluation, hewever, it is 1lluminat-
ing to exsmine the wall~to-bulk tempersture difference at the entrence of

the heated Bection. With x = O, (25) becomes

(b, = 1:1,)0/(1:w - tp)y = [G(l) + o(8&y/2L)
+ i cmRm(l)}/[G(l) + o(&t/ZL)] (35)
==,

Vhen % = i, howevery, (15) becomes
G(1) = - i CynBm (1)
m=l

g0 that
(b = ) (b = ), = a(st/zL)/E}(l) + o(ty/21)] (36)

In the sbsence of & temperature~jump effect, the wall~to-bulk tempera-
ture difference is zerc st the entrance, With a temperature Jump, how~
ever, the entrance tempersture difference has & nonzero value. FEquation
(36) 1s plotted in Fig. 5 as & fumetion of the two paramsters v/ end
£,/2L for o = 2 and 1. For either wall heating situstion the entrance
temperature difference incremses with an increasing velue of &i/2L.

The magnitude of the slip velocity hes only & smsll influence on the
quentity (t, - t-b)o/(tw - tp), for o =1, valle for o = Z the influence

of slip veleelty is more pronounced.
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The variation of the wall~to=bulk temperature difference along the
duet length wes evalusted from (25) for several velues of the rarefac-
tion paremeters uy/% sand &./2L. Plots are given in Figs. 6 and 7
for o =2 and o = 1, respectlively,

Inspection of Figs. 6 and 7 reveals several interesting trends.
First of all, for & fixed value of §./2I, the wall tempersture verie~
tion 18 more sensitive to the slip veloeity over most of the duct length
for the unsymmetrically heated chammel {o = 1) than for the symmetrically
hested chemmel (o = 2). Near the emtrance, however, the reverse effect
is obtained, For both wall heating situstions, the slip velocity has the
effect of retarding %, ~ t, in its approach to the fully developed
velue, while the temperasture Jump has the opposite effect. Finally, the
ebacigsa geale for o =1 1im twice thet for o = 2. The length required
for the wall~to~bulk tempersture difference to approach fully developed
conditions is thus grester for the uwnsymmetrically heated channel then
for the chennel hesbted uniformly from both walls.

Tt is the practice to define & thermal entrance length as the hested
length required for t - % to approach within 5 percent of the fully
developed value, A horizontal dsshed line corresponding to an ordinaste
of 0,95 1a shown in Figs, 6 and 7.

It is perhaps somewhat more illuminsting to present the variamtion
of the well~to-bulk temperature difference in terms of the rarefaction
paremet er u.-fR?;'/ 2pl. as in Fig. 8. The effect of increased gas rare~
faction is to shorten the thermal entrance length. The accommodation
coefficient also has an important effect on the thermal entrance length,

aend this effect is associated with the ineresmse in temperature Jump with
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decreaged accommodation coeffilelent,

The longitwdinel varietion of the Nusselt nwmber along the duct
with uniform hest flux at one or both walls (268) was evalusted and is
plotted in Fig. 9. The velocity and temperature Jumps give rise to
opposite changes in their effect on the Nusselt number variation; the
velocity Jump tends to increasse the Nusselt number at a given axial
position, while the temperature Jump tends to decrease the Nusselt
number. Numerieal evaluations of the Nusselt mumber dependence on the
parameters u-\/’ﬁg'./ZPL and a are plotted in Fig. 10. Clearly the
overall effect of the gas rarefaction is slways to decrease the Nusselt
number below its contimumm value et every position along the heated
lengths

FIOW IN ZIRCULAR TUBE

Attention 18 now turned to the case of axislly symmetric slip flow
in 8 cirecular tube, The coordinste system for the present problem is
ghewvn in Fig, 11.

It 1s again assumed that the velocity profile 1s fully developed
and 18 unchanging along the tube length. The veloeity dlstribution and
the fully developed hest~transfer characterisbties have already been in-
vestigated for the circular~tube case [1], and many results obtained
are immediately asppliceble. The development of the round~tube system
1 similar to that of the parasllel-plate chennel.

The differentisl equation for convective heat transfer is now

pCpu:‘at"’ax) = (k/r)(d/dr)(r 3%/dr) (37)
The assumptions and restrictions of this equetion are the same as those

previously explained. Wher written in terms of the dimensionless vari-
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gbles, (37) becomes
24 (w) (08/3L) = (1/w) (3/dw) (w It /dw) (38)
The veloeity distribution u is given in [1] and from the results the
dimensionless velocity profile f(w) and the slip veloeity ratio wug/u
are eagily obtained:
£(w) = 2(1 - o + 4a)/(1 + &) @ =& /d (39)
g/ T = £(1) = 8a/(1 + 8a) (40)
For large x, a fully developed temperature profile tg exists in the
form |
(bq ~ t4)/(arg/k) = (4/RePr)(x/rg) + H(w) (40)
where the radial function H{(w) is given in [1] as
Hw) = of - (1/4)a?* - (7/24) - [il/z)mz - (1/a)e Jlug/m) + (1/24) (ug/E)2
(41)
The solution for the thermsl entrance region can be shown to have

the form

te/ (arp/K) = i CpBy (@) exp[ =4, (x/rq) /RePr | (42)
n=

where A, and R, are, respectively, the elgenvelues and eigenfunctions
of the Stwrm~ldiouville problem:
(a/dw) [w{dR/dw)] + 2Aaf(w)R = O
dR/dw = 0 &t ® = 0,1

The coefficients C, in (42) are obtaeined from the result

1 1 2
Cp = -f 20H (o) £ {0) Ry, (@) d j; 2af () Ry (0)do
0

1
= f 2wH(w) £ (@) Ry (0)dof [R{w) (BZR/Bm N 1 (448)
0 A=Ay
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or
Cn = 1[I0®%80 ) L, 2 (44p)

In order to obtain (44a), the result

H(w) = - i CpBp (@)
n=1

waes used.
The complete solution for the temperature thet applies along the
entire tube length is obtained by summing (40) and (42) to obtain

(t =~ t4)/(arg/k) = 4(x/rg)/RePr + H(w)

+ : CpBy, (@) exp[ ~4A, (x/rq)/RePr] (48)

The temperature~jump effect at the tube wall is given by
by = by = =2(arg/k) (E/d) (47)
Hence, the wall temperature along the length of the tube is obtained as

(by = t1)flaro/k) = 4(x/r0)/ (RePr) + E(1) + 2(&4/d)
+ 2 o templ-itax/ro)/ ep)] ()
Nz

This equation can be rephrased in terms of the bulk temperature ty(x)

with the result
- ty)/ (g = tp) g {H(l + 2(&/d)

+ f: can(il}exp[-an(x/ro)/RePr]} /[E(l) + 2(tg/d)]  (49)
n=1
where

- tp) = (arg/K)E(L) + 2(&/4)] (50)
and

By (%) =ty + (ary/k)(4x/ry)/RePr (51)
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The Nusselt number may be determined from the definition

Nu = h(2rg)/k = [o/(ty - tp)]1(2r0/k)
When (49) and (50) are used, the result obtained is

Nu = 2 {H(l) + 2(E4/a) + : CyRy(1)exp E4)\n(x/ro)/RePr]}
n=

(52)

(53)

The Nusselt numbers at the entrance of the heated section Nug and in the

fully developed region Nuy are readily obtained from (53) as

Nug = 1/(§t/d)

Nug = (48/11) 11 - (8/11)(ug/t) + (1/11) (ug/W? + (48/11)(£4/a)]
The effects of gas rarefaction on the fully developed Nusselt number (55
have been considered in [1].
The asymptotic behavior of (43) at large values of A is examined
in [4,7] and it is shown that the asymptotic expressions for the eigen-

velues N, and constents D = Can(l) are given by

MB, + N
tan By = MB, - N
D, = -lGG,/E\I + (W2/m) + MB?J
where
Bn = Vxn il
- 1
I; = ‘J/N W/Efﬁﬁf-&m = [;/4@ + (1L + 4a)sin'l(l/1/l + 4ai]/:/l + 8a
0

M= 4(4q)3/2/ [-\/4@ + (1 + 4a)sin~L(1/~/T F _4oc)_|
N=1- 4o
The values of 17 for any given slip velocity ratio ug/U are shown in

Fig, 12.

(54)

(55)

\
7

(56)

(57)

(58)

(59)

(60)

(61)
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The first four eigenvalues and coefficients for the case of flow in
a round tube are shown in tdble II. The results for continuum flow
(us/ﬁ = 0) were obtained from expressions given by Dzung [8], while for
slug flow (us/ﬁ-+ 1) the eigenvalues were obtained as the roots of

Jl( zxn)l/z

i

0. The coefficients Dn are then obtained from the simple

result D, -l/%n.A Also shown in teble II are the data obtained through

the use of an IBM 7094 computer by the Runge-Kutta method [4]. It is
apparent that the asymptotic formulas yield values of sufficient accuracy
for n 2 2.

Numerical values of the Nusselt number variation along the tube
length (53) were evaluated as functions of the two parameters us/ﬁ and
gt/d and are plotted in Fig. 13. The trends are similar to those cb-
served in the parallel-plate channel system. The Nusselt number varia-
tion' can be calculated as a function of the parsmeter uqfﬁgg/pd; the
results of such a calculation are plotted in Fig. 14. Increased gas rare=-
faction and/or decreased accommodation coefficient reduces the Nusselt
number below its continuum value, and, in addition, shortens the thermal
entrance length, which has been defined alternatively as the heated
length required for the Nusselt number to approach within 5 percent the
fully developed value as given by (55).

OTHER RAREFACTION EFFECTS

In [4], modification of the present heat-transfer results for laminar
channel or tube slip flow is made, or discussed, to account for additional
slip effects, such as wall shear work, modified temperature jump, and

thermal creep velocity.
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CONCLUSIONS

Solutions were obtained for laminar, forced-convection hedt transfer
to a slightly rarefied gas flowing between parallel plates or in a circu-
lar tube with uniform wall heat flux. The wall temperatures and Nusselt
numbers in the entrance and fully developed regions can be obtained as
functions of the wvelocity a.nd temperature jumps at the wall, or as func-
tions of the mean free path.

The results indicate that the slip-flow Nusselt numbers are lower
than those for continuum flow at all axial locations along the conduits
and also that the thermal entrance length 1s decreased with increased
gas rarefaction for either the parallel-plate channel or the circular tube.
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TABLE I.

- EIGENVALUES AND COEFFICIENTS FOR SLIP FLOW IN A

PARALLEL~PLATE CHANNEL WITH UNIFORM HEAT FLUX

(a) Symmetry number, 2.

Ratio of slip to average velocity, us/ﬁ

0 1/3 3/5 1
Analytical| Numerical [Analytical| Numerical
solution | solution, solution | solution,
Runge-Kutta Runge-Kutta
method method
Eigenvalue
7&/2 3.540 | 3.78 3.33 3.35 3.23 3.14
7\%/2 6.800 | 6.72 6.49 6.41 6.36 6.28
k%/z 10.05 9.78 9.85 9.54 9.50 9.42
Ki/z 13.30 12.90 12.82 12.869 12.65 12.56
Coefficient
Dy -0.2090| -0.1479 -0.2331 -0.2110 -0.2264 |-0.2030
Do - .0703| -~ .0642 - .0701 - .0613 - .0618 |- .0508
Dz - .0367| - .0332 - .0336 - .0282 - .0280 |- .0226
D, - .0230f - .0198 - 0197 - .0165 - .0161 |- .0127
(b) Symmetry number, 1.
Ratio of slip to average velocity, us/ﬁ
0 1/3 3/5 1
Analytical| Numerical |Analytical| Numerical
solution | solution, solution | solution,
Runge-Kutta Runge-Kutta
method method
Eigenvalue
1/2
Kl 3.800 4.09 3.50 3.51 3.35 3.14
X%/z 7.071 6.99 6.66 6.51 6.46 6.28
X%/z 10.33 10.01 9.82 9.61 9.58 9.42
Xi/z 13.60 13.09 12.98 12.72 12.71 12.56
Coefficient
D,y =0.1470| ~0.0711 -0,1821 -0.1685 -0.1920 [-0.2030
Do - .0525] - .0425 - .0583 - .0567 - .0566 - .0508
Dz - .0278} - .0259 - .0291 - .0271 - .0287 |- .0228
Dy - .0176] - .0169 - .0175 - .0156 - .0154¢ |- .0127




TABLE II. - EIGENVALUES AND COEFFICIENTS FOR SLIP FLOW IN A

CIRCULAR TUBE WITH UNIFGRM WALL HEAT FLUX

Ratio of slip to average velocity, us/ﬁ

0 2/5 2/3 1
Analytical| Numerical |Analytical| Numerical
solution | solution, solution | solutiodn,
Runge-Kutta Runge-Kutta
method
Eigenvalue
7\%/2 2,531 | mmmm- 2.55 2.64 2.60 2.710
K%/z 4.578 4.71 4.63 4.75 4.74 4.955
x%/z 6.599 6.76 6.69 ;_6.88 6.86 7.195
xi/z 8.610 | 8.81 8.75 9.00 8.98 9.425
Coefficient
Dl ~0.1985| mmmem= -0.1855 -0.1670 -0.1658 [-0.1360
D, ~ J0893| -0.0594 - 0605 - 0515 - .0510 |- .04086
Dz ~ .0385, - .0306 - .0301 - 0247 - .0245 |- .0194
D, - .0230| - .0217 - .0185 - ,0145 - .0144 |- .0113




E-2431

ptt— O
fp—
foest—
o L3
e

i

S
4 ty : ti

X y
éx
¥ f T f B Insulated wall
q
(a) Symmetry number, 2. (b) Symmetry number, 1.

Figure 1. - Physical model and coordinate system for parallel-plate channel.
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Figure 8. - Wall temperature ratio in thermal entrance region for flow in a parallel-plate channel with uniform wall heat
flux. Specular reflection coefficient, 1; ratio of specific heats, 1.4; Prandtl number, 0.73.
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